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Up to this point we have considered Newtonian dynamics and Lagrangian dynamics.  
Now we consider Hamiltonian dynamics.  The Lagrangian is written in terms of 𝑛 
generalized coordinates and their time derivatives.  This set of parameters constitutes a 2𝑛 − 
dimensional state space.  The Hamiltonian is written in terms of the generalized coordinates 
and their conjugate momenta, defined as 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖.  This set of 2𝑛 parameters constitutes 
phase space. 

Recall from Lecture 15 that the Hamiltonian was derived to be ℋ = ∑ 𝑝𝑖𝑛
𝑖=1 𝑞̇𝑖 − ℒ, 

where 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖.   

One can solve the 𝑛 canonical momentum equations for 𝑞̇𝑖 in terms of the coordinates 𝑞𝑖 
and momenta 𝑝𝑖 to arrive at 𝑞̇𝑖 = 𝑞̇𝑖(𝑞𝑖,𝑝𝑖 ).  With this, one can express the Hamiltonian in 
terms of coordinates and momenta alone ℋ(𝑞,𝑝), essentially employing a Legendre 
transformation to move from (𝑞𝑖, 𝑞̇𝑖) to (𝑞𝑖,𝑝𝑖 ) as the independent variables.  Taking the 
derivative of the Hamiltonian with respect to 𝑞𝑖 and 𝑝𝑖, one finds Hamilton’s equations: 
𝑞̇𝑖 = 𝜕ℋ/𝜕𝑝𝑖 and 𝑝̇𝑖 = −𝜕ℋ/𝜕𝑞𝑖, 𝑖 = 1, … ,𝑛.  This is a set of 2𝑛 first-order differential 
equations, as opposed to the set of 𝑛 second-order differential equations one gets from 
Lagrange’s equations.   

The Hamiltonian dynamics formulation is useful for quantum mechanics and for classical 
statistical mechanics.  As a way of solving classical mechanics problems it has few 
advantages over Lagrangian dynamics.   

We considered the Hamiltonian description of a particle moving in one dimension under 
the influence of a conservative force and showed that Hamilton’s equations can be used to 
reproduce Newton’s second law of motion.  The procedure of utilizing the Hamiltonian 
method is: (1) choose the generalized coordinates 𝑞𝑖, (2) write down 𝑇,𝑈, and ℒ in terms of 
the coordinates and their time-derivatives, (3) compute the conjugate momenta 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖, 
(4) express the 𝑞̇𝑖 in terms of 𝑞𝑖  𝑎𝑎𝑎 𝑝𝑖, (5) compute the Hamiltonian ℋ, and (6) write out 
and solve Hamilton’s equations. We then used the Hamilton method to solve for the 
equations of motion of the modified Atwood Machine, shown in Problem 13.23 of Taylor 
(pages 553-554).   

The generalized coordinates and their conjugate momenta, defined as 𝑝𝑖 = 𝜕ℒ/𝜕𝑞̇𝑖, 
constitute a set of 2𝑛 quantities that span phase space.  The instantaneous state of the entire 
system is summarized as a single mathematical point in this phase space.  Call this point 
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𝑧 = (𝑞⃗, 𝑝⃗), where 𝑞⃗ = (𝑞1, … 𝑞𝑛) is an ordered list of the 𝑛 generalized coordinates, and 
𝑝⃗ = (𝑝1, … 𝑝𝑛) is the list of 𝑛 conjugate momenta.  Hamiltonian’s equations describe how 
this point moves in phase space – in other words it describes the trajectory of the phase point.  
This is a deterministic equation for the evolution of the phase point.  It shows that two 
trajectories that arise from two different initial conditions can never cross, because otherwise 
there would be two different trajectories arising from the same equation with the same 
instantaneous value of 𝑧, contrary to the deterministic nature of the phase point evolution 
equation. 

We considered the 2𝑛 = 2 −dimensional phase space of a 𝑛 = 1 one-dimensional 
harmonic oscillator.  The trajectory of the phase point is an ellipse in the (𝑥,𝑝) phase plane.   

 


